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ABSTRACT

There are several requirements associated with data, information, and
artificial intelligencémachine learningnodeling used to develop insights and
inform decisions. These requirements must be given careful consideration to
enable the design, development, and deploymentohditionbased
maintenancetrategy as part of automation and work reduction oppomsniti
within the integrated operation of the nuclear concEp report identifis some
of the important requirements that need to be considered as part of the data
evolution for theconditionbased maintenanegplication on &irculating water
systemin an nuclear power planfhe concept oflata evolutiorconverts data
into information which in turn isonverted into insightecision, and action
overview ofartificial intelligencedesign, development, deployment, and
operation princigsis introducel to support the lifecycle @rtificial intelligence
technologies. Towards the end of the report, we discuss hoeotmitionbased
maintenancean be realized ia seamless digital environment

This report lays the foundation for developing modetailed industry
guidance and a supporting data evolution path for other plant applications, like
operations and plant support. These concepts will be developed as part of the
path forward for ongoing research in Fiscal Year 2023
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ACRONYMS

Al artificial intelligence

CBM conditionbased maintenance
CWP circulating water pump

CWS circulating water system
LWRS Light Water Reactor Sustainability
M&D monitoring and diagnostics
ML machine learning

NLP natural language processing
NPP nuclear power plant

o&M operation and maintenance
PdM predictivemaintenance

PM preventivemaintenance

PSEG Public Service Enterprise Group

SDE Seamless Digital Environments

SSC structures, systems, and components

STAMP  Sysem Theoretic Accident Model and Process
STPA System Theoretic Process Analysis

VPI valve position indication
VSN vibration sensor nodes
WO work order

TERMS TechnologyEnable Riskinformed Maintenance Strategy

XAl explainable artificialntelligence



DATA ARCHITECTURE AND ANALYTICS
REQUIREMENTS FOR ARTIFICIAL INTELLIGENCE
AND MACHINE LEARNING APPLICATIONS TO
ACHIEVE SEAMLESS CONDITION-BASED
MAINTENANCE

1. INTRODUCTION AND MOTIVATION

Operations and maintenan@@&M) activities are key aspects of ensurthg availability and
reliability of energy generated by nuclear power plants (NRP$2]. O&M cost® including activities
such as inspection, calibration, testing, and replacemana ;e of the major nowapital costs
contributing to the overall operation costs of NPPs. There are three main maintenance strategies to ensure
availability, reliability, and safety. These maintenance strategies are: (aiseel periodic maintenance
(refered to as preventive); (2) failuased maintenance (referred to as corrective); and (3) condition
based maintenan¢€BM) (referred to as predictive). Over the years, the nuclear fleet has relied en time
based and failurbased maintenance strategiesasttheir structures, systems, and components (SSCs) to
achieve higkcapacity factas. This approach has also led to higher operating qu&senting longerm
economic sustainability challengi@ the current energy market fitre existing the fleet ofight-water
reactors.

An ongoingresearctand developmergrojecttitled Technology Enabled Riskformed Maintenance
Strategy (TERMSundertheU.S. Departmentof Energys Li ght Water Reactor Sust
Programis developing awell-constructedrisk-informed predictive maintenance (PdM) approacttlier
circulating water system (CW$]. The research project is in collaboration withblic Service
Enteprise Group (PSEG) Nuclear, LLC and takelvantage of advancements in data analydiggicial
intelligence (Al)andmachine learning (ML)physicsinformed modeling, and visualizationhe research
and developmentported irReferencef3]i [5] describe in detahinapproachdeveloped tanapdata to
actiors (also referredo asdata evolutiopas part of the risknformed PdM strategy.

Data evolution is atructuredapproach of transforming the embedded knowledge in heterogeneous
data sources collected by NPPs across SSCs into usable information for deeiking with the human
in theloop by mapping and managing the ddata mapping refers to the pathways along which data
flows. Data management refersusingappropriate structuseformas, tags, and transformation of those
data.The structured approhenayor may notinclude usage of Al/ML technologies as partlod
modeling approach. In this research and report, AlI/ML technologigsasref the modeling approach.

Figurel represents thgeneralkchematic oflata evolutioracross three plant applicatiomgperation,
maintenance, and suppdrigure2 presents data evolution specific to plant maintenance that corsider
risk modeling and predictive modeling to achieve preventive maintenance optimiZidnand asset
managemeniAn example ofata evolutiorfor CBM of the CWS (Figure3) is represented as a variat
the System Theoretic Accident Model and Proc&SEAMP) [6] andSystem Theoretic Process Analysis
(STPA) [7]. For details on the core concept of STAMP and ATgeeAppendixA.

In Figure3, the CWS is a controlled process whose maintenancéevidptimized to maximize
availability and cost effectiveness. Multiple measurements (data) are collected at different temporal and
spatial resolutions and with different formats (analog and digital). Data includémeaime series,
static, text, visuaand others. Some of the analog data are digitized to be compatible with other digital
data. These digital data are stored in a data hub and are analyzed using advanced data analysis techniques
to develop fault signatures (i.e., digitalized informaYidrne fault signatures are then used by Al/ML
predictive models to diagnose and prognose the current and future health of the CWS, respectively.
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Figure2. A general schematic of data evolution for plant maintenance application.

d Requirement

Action refers to the decision to perforon defermaintenance based on tG8/S health stateln Figure3,
there areseveralirectionsfor the flow ofinformation and actiosito andfrom different users in the loop
In STAMPandSTPA, these are analogousctntroller and control actions. SAppendixA for details.

There are several requirements associated with data, information, and AlI/ML macelthtp
develop insights and inform decisions. These requirenmamsbe given carefutonsidergion to enabk
thedesign.developmentand deployment af CBM strategy as part agfutomation anevork reduction
opportuniteswithin the integrated operation tife nuclear concefd8]. This report focuses odéntfying
requirementgor data evolutionwhere he CWS is the target system. However, the requirements
developedn this reportare generallypplicablefor the CBM of other plant SS€with application
specific updatesThe CWS is briefly described here. Foore CWS details sed4].
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Figure3. An example of dta evolutiorfor CBM of the CWS.

while minimizing any adverse impact on the Delaware RRErmThe CWS consists of the following

Digitized
b a

The CWS is an important nesafetyrelated system. As the heat sink for the main steam turbine and
associated auxiliaries, the CWS at the Salem NPP is designed to maximize steam power cycle efficiency

major equipmenfo]:

1

=A =4 =4 -4 =4

Six vertical, motod r i ven ci

rcul ating

pumps

traveling screen at the pump intake to remove debris and marine life

Main condenser

Condenser waterboxraemoval system

Circulating water sampling system
Screen wash system

Necessary piping, valves, and instrumentagéindcontrols to support system operation.
Figure4 shows the pair of waterboxes associated Withdensel of Unit 1 (i.e., 11A and 11B).

(or

fi c

rcul

Each of the two plant units has om@in condensewith six waterboxes, circulators, trash racks, and
traveling screens. For a functional description of the CWS, alathgany other relevant details, see

Referencd9]. Figure5 shows different locations on the circulating water py@y/P) motor where

measurements are continuously collected as part of the plasof&Ihistorian.

In this reportChapter 2 presentequirements associated with datdlectedfor CBM. Chapter 3

briefly introduces the concept of information automation. Chapter 4 presaméethe design, develop,

deploy, and operaferinciplesof Al/ML technologies. Chapter 5 briefly introduces thaoept ofa

seamless digitadnvironmentA report summary anthe path forwardarein Chapter 6.

ator
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Figure4. Schematic representation of the CWS at Salem Unit 1.

2. DATA

Data creates the underlying foundation for any work perforamelér CBM at a plant site, as the data
drives the analytics and insight generation and review, as well as resulting actions or services. As the data
utilized for the CBM application are diveraad sourced from many different locations, the structures
used to store, retrieve, and modify the data must be suitable for the intended application. Each type of
data has different requirements related to accuracy, reliability, responsiveness, atgeanitbili
integration into developed services and tools.

We collected data in an NPP at different resolutions and in a variety of formats using the following
definitions for consistency. Raw data is the direct and original data generated at a source without any
preprocessing. This raw data may be in a variefgrohats, including numeric, handwritten text, audio,
video, and visual. Raw data can be in analog or digital formh&se are technologies available to
transform analog data into digital data (i.e., digitize). This in some ways standardizes theastdrage
processing requirements. In addition, data can be collasigtchronously, synchronously, and statically
with time.

Data is asynchronous when ttt@tacollection is randomly delayed from the request to collect data or
has no consideration for the timg within a process or event. Asynchronous data can be taken
periodically. Manual surveillances are a good example of periodic asynchronous data.

Data is synchronous when ttatacollection is based on clock timing or is planned to coincide with
the timirg within a process or event. A good example of thanige collecing vibration or audio data.
Although synchronous data is usually thought of being continuous within a finite time window,
synchronized data can be collected on an aperiodic basis.drafjesynchronous data requires
significantly more storage space and computing power than asynchronous data.

Static data are intentionally set values by operators or other authorized personnel that are to remain in
effect until they are changed. Exampléstatic data are process set points, process limits, and safety
limits. Static data are usually used as checks on live sensor data to ensure efficient and safe operation.
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Figure5. Schematic representation of a CWS motor and pahopg with measurement locations

Collected aynchronous, synchronous, and stdatamust be reconcilableased on physical
constraints to eliminate erroneous measurements and erdwtacqualityln practice, dta quality $sues
often directly impact information extraction and Al/ML mogelrformanceSome of these aspects of
data will be discussed in following sections agtteport.

2.1 Data Types

To supporthe CBM of the PSEG@wned CWSwe receivedlatafrom the Salem NPPresented in
Section.1.1,2.1.2 and2.1.3

2.1.1 Process Data

The Unit 1 and 2 CWS process data are collected
OSI PI system. The raw process daten the planfirst available includes:

Gross load (MWe)

River level (ft)

Ambient air temperature (°F)

CWP inlet river tenperature (°F)

CWP outlet water temperature (°F)

CWP motor status (ON or OFF)

CWP motor stator winding temperature (°F)

CWP motor inboarthearing temperature (°F)

=A =4 =4 -4 A4 4 -4 A -4

CWP motor outboarfiearing temperature (°F)



1 CWP motor current (amps)

After an upgrade in 201%®ontinuously monitored measurement parameters associated with the main
condenser for both Unit 1 and 2 have been available. The main condenser parameters for Unit 1 are listed
below (the same parameters are available for Unit 2).

1 CWP 11AB outlet temperate (°F)

CWP 12AB outlet temperature (°F)

CWP 13AB outlet temperature (°F)

Main Condenser Backpressute

Main Condenser Backpressute

Low Pressure Turbine 11 exhaust temperature (°F)

Low Pressure Turbine 12 exhaust temperature (°F)

Low Pressur@urbine 13 exhaust temperature (°F)

Low Pressure Turbine 11 exhaust hood temperature (°F)
Low Pressure Turbine 12 exhaust hood temperature (°F)
Low Pressure Turbine 13 exhaust hood temperature (°F)
Condensate 11AB hot well temperature (°F)
Condensate 12ABot well temperature (°F)

Condensate 13AB hot well temperature (°F)

=A =4 =4 =4 A4 -4 -4 4 -4 -4 -4 A - -

Vacuum pumps status.

Along with the process datdhe CWP inlet pressure is collected every 12 hours in the electronic Shift
Operations Management System

2.1.2 Work Order Data

ThecollectedCWSdata contain metadata related to plant processes, maintenance logs, operator logs,
work order WO) documents, and condenser information. WOsSmlem Unit 1 and ZWSscontain
useful informationincludingpreventive maintenanc®¥) and corrective maiehance WOs.

PM WOs are planned maintenance activities performed on a predetermined frequency Hased on
engineering review and maintenance strategy for a given type of equioengictive maintenand&/Os
are reactive maintenance to resolve a nonconfarondition such as a degradation or failure. Both
types of maintenance activities are documented in WOs.

The details in a WO vary across the plant site, but at a minimum, they contain information such as
WO number, order type, maintenance activity tyijpactional or equipment location, description, priority
level,andapproximate start arehd date. For this reasamtural language processing (NLP) techngue
areused to analyz&/O database and categmrthe resulting information. The CWS WOs can be used to
perform parameter estimati@s part of the risk modelirgnd PM optimizationFor detailssee
Referencgl0].

WO dataNLP allows for effective and quick feedback on how well the maintenance activity or
replaced component is working aitsleffect on the CWS. The replacement or refurbishment of a major
assetlike a pump or motqusually changes the baselinfetite CWS process measurements. The ability
to quickly identify, trackand compare significant baselioen help determine when maintenance actions
weretaken WO NLP would help enable this capability.



2.1.3 Vibration Data

Online vibration data is an excelleakample of synchronous datastaling wireless vibration sensor
nodes (VSI) on CWP motors allogfor continuousonline monitoring. Sixty sensor nodgd,[11] were
installed across 12 CWP motors and associated bypass valves. Three wireless VSNs werairbtlled
plant siteon each CWP motoaé depicted ifrigure5), andtwo VSNs were installed on each associated
CWP bypass valve. The three VSNs installedh@CWP motos are referred as motor axial vibration,
motor outboard bearing vibration, and motdsdard bearing vibratio.he gacement of the transducers
on the CWP motors and bypass valves can be fouRéfierencgl0]. Each sensor node consists of a
temper&ure sensor and two accelerometers sensitive to orthogepkria motions. The sensor nodes are
mounted on the plant asset via a magnetic base in the node.

The vibration data consists of metadatach as date (YYY¥YMM-DD), time (in the Coordinated
Universal Time format), and sampling rate of the vibration signal. The vibration signal is collected for
3.2 seconds at a sampling rate of 512 samples/second. For these sampling conditions, this works out to be
1.64K of dataper samphg period. Multiply thisby 60 sensotsand this becomes X0 of data per
sample period. The data storage needs on a yearly basis for a periodic sample every hour would be on the
order of 860 MB. Thus, the data storage infrastructuregtedue designed to handieis accumulation
of data over the years. The vibration signal can be collected for different lengths of time and at higher
sampling rates (up to 2,056 samples/secomtdich can push data storage needs significantly higher.
Figure6 shows representative vibration signals for both X and Y directions from the VSN located on the
motor axialposition.

CWP Location ; MA — X-direction — Y-direction

Ecceleration (7)

Acceleration (g)

A i Wi ‘IW“} i Vy' A

0 02 04 0.6 08 1 12 14 1.6 18 2 22 24 26 28 3 32
Time (sec)

Figure6. Vibration measurement collected at locatimotor inboardbn a CWP motor foX and YVSN
directions.

2.1.4  Data Ingest

This section covers consideratiasfdhe data ingest required as the foundation for performing data
analytics. The data ingest method shawddsider the specific use case(s) applicable to the data.

The best starting point for designing data ingest resources for a data analytics ptséotinalata
analytics box inFigure3, is to verify that the data refresh frequency aligns with the frequency at which
analytics are performed. For services that requiretiaal or nearreattime data in order to provide
instant results and allow stakeholder organizatiorespond immediately, the data ingest needs to match
this frequency in order to support the intended responsiveness. Other analytics may not redoire real
data, as they provide loftgrm trending insights or support processes that allow for si@sponse



times. The intended frequency of data receipt is important in designing a streamlined process and is an

important cost consideration. A delivery center platform can use bottimeasensor data and plant
enterprise data extracted on a predeteechifrequency (i.e., daily, weekly, or monthly) to identify
insights into plant condition and processes.

It could beexpensive to receive streaming data, as most cloud providers charge for the data

transferred as well as the number of unique requestgrboess of transmitting streaming data sends
data requests as the data is received, resulting in a higher codathbatch processing on an hourly or

daily basis. Furthermore, an additional processing cost needs to be considered. Repositories or storag
locations for streaming data are constantly changing. Processes for analyzing data must beimlesigned

alignmentwith the frequency oflatainput (reattime or batctprocesses).

2.2 Data Hub and Data Quality Requirements

In this section, we discuss sometloé requirements to be considémhendevelopingthe data hub

used to storandprocess theollected dataThe section also discusseesrtain requirements thdatamust
fulfil | as they are used for data analysis and predictive model development.

2.2.1 Digital Hub for Automated Access

It is critical that the infrastructure for handling and maintaining data be considered prior to

implementing data analytics (as showrrigure3). The following is a list of primary considerations for
data ingest, storage, and preprocessing:

il

f
f

Identify security requirements implement a security architecture that prevents unauthenticated or
unauthorized access

Understand the types of data reqd for analysis (e.g., time series, logs, WO, resource utilization)

Understand the frequency at which data analytics must be performed to support stakeholder response

Cr eat e -sduscéoftgriuet ho veri fied dat a raeaytcsmotdetsaride s
Al tools

Identify and plan for scaling needs, based on the full data quantities to be ingested
Understand the costs and benefits of various technologies that handle large datasets.

2.2.2  Data Quality

As noted earlier, data quality issuesofimpact data analysis and model performance. Data quality

issues can arise dueamumber of reasons, including:

f
f
il

=A =4 =4 =4

How data is captured, transmitted, and stored
Missingor incomplete data

Inconsistenciebetween data sourcés., sensor measurement, manance record, and operation
logs)

Incorrectsensoisetingsand outlierdi.e., incorrect sensitivityput of calibrationjncorrect
orientation, or incorrect sensor placement)

Duplicatedata
Incorrectlabeling
Noisy data
Humanerrors

t hat



These datguality issues must be address€lere are several ways to addrgata quality issues.
Redundancy from multiple measurement sourmea system may address some of tliesees but
introduces newehallengessuchas handling different timestamps and highly correlated datxe are
several data quality measurement and improvement frameywagesed and implemented for
maintenance dafa2]i [14]. Theframework developed biai et al[13] included recommended metrics
for evaluating thesuitability of the data for the purpose of diagnostic and prognostiteldevelopment.
Griffith et al.[15] recommend bst practiceto align thetime series variableaddressing sensors having
different sampling ratesndintegrating contextual data sources with time series Hakens et al[16]
presentec data quality scorecard for assessing the suitability of dadidgnostics and prognostic
modeling.

2.2.3 Data Balance

Imbalanced dats a form of betweexlass imbalancthat arisesvhenthe number of samples ome
data classlominatsthe samples in amallerclasg17]. Thiscauses ML modslto be more biased
towardsthe predominantlass Omri et al[17] presentametricto quantify datambalance Data
balaning isa process to address thelialance in data bysingthe Synthetic Minority Oversampling
Techniqug18], anoversampling methofibr imbalanced classificatioid 9], or data augmentation with
balancedsenerative Adversarial NetwofRO].

Class data sets generated from industrial processéasharentlyimbalancedFor example, plants
that are efficient, produceuglity products, and have robust operations, by definition, spend the majority
of the time in normal states. There can be multiple process states that can be classified as normal
operationssuch asstartup shut down, holdand production. The abnormahtts caused by equipment
failures, events and asset wear occur randomly ovettilmedgrames. Thus, process data sets are
dominated byhormal states of operation.

If this imbalance of normal data sets is not addressed by balancing the data sets prior to performing
data analyticsthe ML models will not be as accurate and tend to skew resulting classifications toward
normal operating stateShe imbalance may also fuiscate both superior and inferior operational states
by blurring the fidelity of the ML models. Most industrial processes are complex and contain hysteresis
(i.e., dependence on histoigprocess parameters duritingg transition between states. The @bito
identify and classify these transitional data sets will help increase the effectiveness of classification and
predictions by providing data classification sets that are more balartisdeads to atural balancing
since there will be more classefsprocess states that are considered normal for the same amount of data.
The resulting increase in ML modedelity from a better data balance will provide a means to identify,
track and predict complex state changes in processes.

2.2.4 Data Reconciliation

In practice, sensor measurements are noisyhamd random errors, as identified as pathef
discussion omlata quality issue®ata filtering and reconciliation are two approaches used to address
these data quality issué3ne type ofdata filtering is he process of atteniag high-frequency
components in the signdiiltering can also target specific frequency bands if there is a reason to believe
that the measurement noisen@rowband On the other hand, data reconciliation is a data filtering and
reconstruction technique that explicitly uses process constraints to eliminate erroneous measurements.
These constraints normally include mass balance, energy balance, and eraddéidal balance.
Graphically, the data reconciliatigmocesscan be represented as showikigure?.
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Figure7. Schematic diagram of the data reconciliafioacesg21].

In the data reconciliatioprocessraw process variables can be classified according to the diagram in
Figure8 [21]. The first dichotomy is between measured and unmeasured variables. This dichotomy is
based on thavailability of sensor modalities to measure specific process variables (flow rates, pressures,
concentrations). Obviously, due to economical and physical constraohtsl process variables can be
measured. In realitfhe majority of process variableseunmeasuredhese variables are instead
estimated through measured process variables. Further, the measured variables are dichotomized into
redundant and nonredundaRedundant variables can be estimated from other measured variables using
the proces models. Ifavariable is redundant,dt o0 e s n &a be measue@lthough quite often
engineering systeshave numerous redundant measurements due to reliability considerations. The
redundant measured variables are further split into spatially rediuaddemporarilyredundant. A
measured redundant variable can be spatially or temporally redundant. A measurement is spatially
redundant if its value can be completely and uniquely determined through measurements taken in other
places and process modehstraints. Flow measurements, for examate often spatially redundant.

The dher type of redundancy exploited in data reconciliation algorithms is temporal redurdancy
when the process is predictable enough for its current or future values ferbedifrom past values.
Notice that spatial and temporal redundancy is only applicable to measured variables.

Data reconciliatiorrannotbe performed without having spatial redundafd}. If there is no spatial
redundancy, the system is determined or undemi@ed and no unique measurement correction is
possible. An equally importagbncepts the dichotomy of unmeasured variables into observable and
non-obsevable. The unmeasured variable is observable if it can be estimated from measured variables
and process models constraints, otherwise, the variable-slhsanvable. It should be matthat all
measured variables apbservableredundant observabfeeasured variabdeareredundant even the
measurement ignavailable[21],[22]. Observability and redundan@nalysesreanintegralpart of the
data reconciliation proce§l],[22].
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Figure8. Dichotomy of variables ithe data reconciliation proce§2l].

Another important aspect tfie data reconciliation process is stationaritta@gf | ant 6 s Tleeper at i o
majority of data reconciliation algorithms assume that the plant is in a steadgrstéttesstationary
process models can be applied. However, quite gftennecessary to reconcile the data during transient
processs Transient data reconciliation is a researchthapneeds to be filled foanefficient
implementation of data recoitiation strategies in NP

For the data reconciliation approach to be effectivhould also address the systematic or gross
errorsthatoften happen durintherecordkeeping cd  p | aerati@nal history. Similar to data
reconciliation in the preence of random errors, gross error detection and elimination also reguires
availability of constraints and redundant measurembiagnally gross errors are caused by two reasons:
a combination of material loss such as piping leaks and either madfitingtisensors or erroneous
recordkeeping.Dealing with gross errors requires addressiegerainterconnected problemsuch as
error detection, localizatigidentification, and correction. The detection problem is usually solved using
statistical techigues of outlier detection. Having detected the gross,@hemext step is identification
which is usually solved by calculating a sample statistic for each measurement and detecting values
exceeding a preselected thresh&dor correctiorrequires availability of redundant measurements,
similar to data reconciliatigrso the gross error can be replaced with an estimate from a redundant
measurement. A general pipeline for fipsinciplesinformedML for CBM is shown inFigure9.
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Figure9. Steps to achiev€BM usingML [22].

As can be seeim Figure9, data reconciliation and gross error detection is only a part of the data
conditioning process necessary to achieve trustable and explainable sotrtioB#/fusing ML
approaches.

2.2.5 Data Completeness

Datacompleteness can be viewed from many perspectives, leadiiffetentdefinitions. In
Referencg23], data completenesss expressed as fAthe extent to whic
depth and scope for the task at haeferencg24] identifiesthree types of completeness. Schema
completeness is defined as the degree to which entities and attributes are notfroissing schema.

Column completenesat a data leveis a function of the mgng values in #&ablecolumn This
measurement <corr es pon d[g5], which &sessesingssing valuas.mnhirdtypeie gr i t
called population compteness with respect to a reference populaliothe case o€WS CBM [10],
theyassessdall threeforms ofcompletenesHowever the data required to generate representative fault
signature for different faults modes weracomplete and did not meet thepulationcompleteness
requirements.

12



3. INFORMATION AUTOMATION

Information automation is the mioyg information and data from one untiéing application to the
other, supportingiserdecisionmaking. The information automation construct can be visualized in the
context of a STAMRINASTPA control loop simply as therows (i.e.,Y § )¥n Figure3.
Sometimes the movement of data and information in some commeRPastill occurs manually
meaning that the dynamic interaction between the controller and controlled process is done without the
assistance of advanced automation.

For exampleauxiliary or field operators currently perform manualkdownso f t he ent i r e
secondary infrastructuffer inspections, securifgurposes, anctadng and recorihg gaugevalues(e.g.,
surveillances)LWRS Program researchers have developed drones that can navigate their way around the
plant to automateome ofthesemanual activitiesincludinginspecthg hazardous location€omputer
vision solutions were developeahd added tthe droneto automateiccurate gaugeeading, even at
oblique anglestherebyenablinganautomation ofjauge calibration and peer verification.

Another example of information automation is the wireless valve position indiggtiRihsensor
technology developed by LWRS Program researd@éig27]. A significant amount of workmanually
performed at NPPs relatesansuringor verifying that manually performed activities were accomplished
correctly. For example, there are approximatelyi 280 valves in a current commercial NPP that must
be manually positieed and then verified, either independently or concurrefilgVPI technology
enablegheonline monitoring and digital verification of valve positions, eliminating the need for manual
verification. This technology can Im®nintrusivelyretrofitted on véves without requiring them to be
recalibrated or recertified. The technology also eliminates the need for periodic calibration. By
automating this manual activity (i.e., enabling information automation), the wikéRissensor system
provides continuouglavailable aneasily collectable verification data

Information automation is also exemplified in LWRS Program research to detect degradation within
NPP piping systemd.he piping system is a critical NPP component, and maintaining this system is
challerging due to the difficulty and high costs of assessing the extent to which it may have degraded
[28]. During scheduled refueling outages, sections of the pipirgmyare periodically inspected for
degradation. For the reasons stated above, it is difficult to decide which sections to inspect. This problem
is compounded by the amount of piping in an NPP. With safety in mind, the nuclear industry takes a
conservativeapproach to piping inspections, but this likely leads to unnecessary inspections being
performed, thus increasing the amount of downtime and affecting the economic competitiveness of the
NPP. To address this, Gribok et[2i8] developed distributed fiber sensors that can withstand harsh NPP
environments and continuously collect higfatiatresolution data from throughout the entire plant. The
data collected by thiber sensors are analyzg8] to identify pipe defects and asse§se health(i.e.,
information automation).

A final example of information automation is the digitalization of pdysed procedures into
computerbased pocedures and electronic work packaf#. The nuclear power industry is highly
proceduralized in that very few critical work activities are performed byaktthe-craft. The paper
based procedures currently used by industry have a proven track record of ensuring safety, but they also
present an excellent opportunity to apply information automation to O&M activities. Automating
information in procedures by ugitomputetbased procedures and electronic work packeggsns that
informationcanbe more dynamicallypresented, thereby enablitige operator to be better integrated into
the work process and concept of operatishichthen lead to increass inoveral work efficiency and
improvements irplant safety.

Some of the requirements considered for information automatien

{1 Information InfrastructureThe infrastructure for handling and maintaining information must be
considered prior tomplementing information automation, including:
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- Avalilability: The degree to which the information infrastructure can support the frequency at
which information automationisneededdell s ed t o support a controll e
insights, make mommendations, and make decisions.

- Timeliness: Requirements for how quickly automation information needs to be processed and
made available to controllers (i.e., latency times in processing and converting data into

information).
- Information Quality and Imtgrity: Requirements for maintaining the quality and integrity of the
information used. For example, an aspect of qu

in the infor mat i odsaurcedfd d iutt ih@n aslelryi ,f i sitayifarind @lr ena t i
information storage is needed.

- Scalability:The plan for scaling the needs of the information infrastructure based on projected
useof automated information.
71 Information Security and Controlelentify the security requirements and implemergeusty
architecture that prevents unauthenticated or unauthorized access.

1 Information Characteristicédentify and understand the characteristics of information used in
analyses that automate informatigathering including:

- Source: Requirements thategjify how the information was acquired or derived from the data.
- Format: Requirements that describe the general arrangement of the information.

- Structure: Requirements that describe the general organization of the information.

- Completeness: Requirementattiecharacterize the scope the information covers.

- Accuracy and Credibility: Requirements that describe the extent to which the information can be
trusted.

1 Transformation RulefRequirements specifying how data will be converted into information,
including:

- Relevance: Requirements that describe what kinds of data will be used as the source for the
derived information.

- Data quality: Requirements describing the characteristics of data quality (e.g., readability,
completeness, accuracy) needed to enable inf@mautomation.

- Calculations: Requirements specifying what algorithms will be used in calculations needed to
convert data into information.

1 EconomicConsiderationsldentify and understand the costs and benefits of various technologies that
enable informion automation.

4. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING: DESIGN,
DEVELOP, DEPLOY, AND OPERATION PRINCIPLES

The diagnostic and prognostic models developed as part of predictive mo&aing 2) for the
CBM applicationtake advantage of advancements in Al/ML technolodibsere are numerous Al/ML
models developefibr CBM. However despite recent impressive progress and success stories of applied
ML, its actual us in the nuclear industtyas been minimal. There are several reasons for auch
reluctance to adopt Al/Mibased technologies in the nuclear indusliyis sectiorintroduces the notion
of RESETAI (Figure10) that needs to biellowedto lay the foundation for AI/ML technologies
adoption in the nuclear industrijhe notion of RESET Ais applicable tahe design, develapent
deployment and operatiotifecycles of AlI/ML technologiesto optimizeCBM in this report. However,
the sameprinciples are applicable for other applicatidiliee plant operation and suppoRigurel) that
use Al/MLtools.RESET Al is briefly elaborated in the following subsections.
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Figurel0. Design, develop, deploy, and operAtéVL technologyrequirements

4.1 Risk, Resilience, Robustness, and Reliability

Risk assessment is one of thestimportant requirements fany technolog development and
implementatiorin the nuclear industrAlI/ML is not and should not be exempted from this requirement.
Risk assessmeronsides the probability of failure, consagence of failure, and scenarsaunder which a
failure could occurTo reap the benefits of Al/MLit is important to understand the risksd potential
consequencedf Al/ML failures,theuse of AIML for malevolenipurposs, and scenargunder which
anAl/ML algorithmwould fail. The risk assessment and management of Al failure should also consider
theinteraction of Al/ML withhumansorganizationsand with other digitalAl/ML) technologies
Referencg30] provides insights on types of Al failures, risk assesspaet risk perceptiarA
framework forAl systemrisk managemergcross a wide spectrum of applications and mathes/been
developedy theNational Institute of Standards Technolod&s].

Al resiliencerefersto the ability toabsorbadapt andrecove from anyanomalous behavior diie Al
technologyitself or of the system within whicthetechnology operagf32]. This anomalous behavior
could occurasthe Al technologyinterplays withother technologies or with humaTherefore, Al
technologesmust beable to absorb, adapt, and recover famh anomalous behavs withoutbreaking
down and requiring.complete rebuild.

Al robustnesss the ability of the Al technology tde invariant taany variations irnyperparameters
or the dataused for training purpos@ndensure thie estimatesrewithin acceptablédentification and
prediction limits. It is very common in practical applications toaining data to vary over time, as new
datasourcesnight beeomeavailable or some of the existing dataurcesnay beunavailable for a period
of time.

The purpose of thesliability requirementor an Al technology iso ensure that theechnology
performs as intend@édthat is within specified limits and without any failure cibnsistentlyproduces the
same outputs for the same inpl&3]. If the performance of an Al technology is not reproducibler
time, not onlywill it impact reliability but also other requirements liobustnessexplainability,
trustworthinesssafety, security, aneconomics.
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